Tetrahedron Letters, Vol.26, No.32, pp 3867-3868, 1985 0040-4039/85 \$3.00 + .00 Printed in Great Britain 01985 Pergamon Press Ltd.

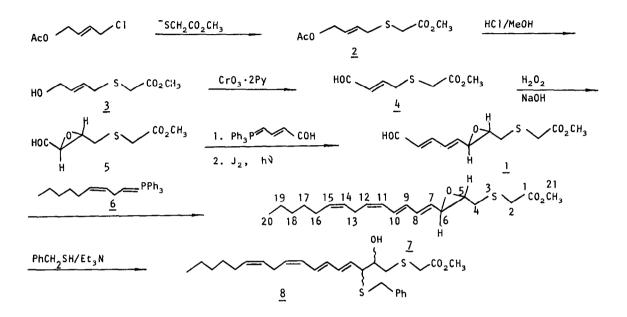
THE SYNTHESIS OF THIALEUKOTRIENE A,

G.A.Tolstikov, M.S.Miftakhov, and A.G.Tolstikov Institute of Chemistry, USSR Acad.Sci., Bashkirian Branch

Summary: A convenient method for synthesizing (\pm) -3-thialeukotriene A₄ and its derivatives has been developed.

The syntheses of (±)-3-thialeukotriene A_4 and its derivatives have been realized to carry on the studies into the synthesis of modified leukotrienes A_4 - E_4 . The key synthon was represented by (±)-methyl 10-formyl-3-thia-5,6E-epoxy-7E,9E-decadienoate <u>1</u> obtained as follows. The reaction of 1-chloro-4-acetoxy-2E-butene¹ with the equimolar amount of sodium methylthioglycolate (dimethyl formamide, 20°C, 24 h) led to the methyl 3-thia-7-acetoxy-5E-heptenoate <u>2</u> in a 85% yield. IR cm⁻¹: 980, 1250, 1680, 1735; ¹H NMR (CDCl₃) p.p.m.: 2.07 s(3H), 3.18 s(2H, C²), 3.28 d(2H, C⁴, J=7.5 Hz), 3.75 s(3H, OCH₃), 4.75 d(2H, C⁷, J=8 Hz), 5.75 m(2H, C^{5,6}).

The treatment of 2 with 5% HCl in methanol (20°C, 30 min) resulted in a quantitative yield of hydroxy-ester 3, further oxidized by CrO_3 -2Pyr in CH_2Cl_2 (0°C, 1 h) into aldehydoester 4 in a 90% yield. IR cm⁻¹: 920, 980, 1620, 1700, 1730, 2750. ¹H NMR (CDCl₃) p.p.m.: 3.18 s(2H, C²), 3.51 d(2H, C⁴, J=8 Hz), 3.74 s(OCH₃), 6.12-7.05 m(2H, C^{5,6}), 9.66 d(C=0, J=10 Hz).


Epoxydation of the aldehydoester by alkaline hydrogen peroxide under standard conditions (30%, H_2O_2 , 1N NaOH, in MeOH, at ~25°C, 20 min, and at 20°C, 20 min) proceeds quite readily to give quantitatively methyl 3-thia-5,6E-epoxy-6-formyl-hexanoate 5, ¹H NMR (CDCl₃) p.p.m.: 2.75-3.02 m(2H, $c^{5,6}$), 3.18 s(2H, c^2), 3.54 d(2H, c^4 , J=6 Hz), 3.75 s(OCH₃), 9.54 d(C=0, J=11 Hz).

Condensation of <u>5</u> with triphenylphosphoronylidene-crotonaldehyde² leads to a mixture of 7Zand 7E-epoxydienals (70%), which was then isomerized without any subsequent purification: the mixture (100 mg) with J₂ (3 mg) and CH₂Cl₂ (5 ml) was irradiated by a day-light lamp for 24 h. As a result, the key synthon <u>1</u> was produced in a practically quantitative yield. The product was purified by crystallization from the mixture of hexane-ether and was individual according to HPLC data; m.p. 78-80°C. UV $\lambda_{max}^{\text{EtOH}}$: 278 nm(& 27500): IR cm⁻¹: 920, 980, 1650, 1700, 1740, 2745; ¹H NMR (CDCl₃) p.p.m.: 2.88 d(2H, C⁴, J=6 Hz), 3.21 td(H, C⁵, J_{5,4}=5.3 Hz, J_{5,6}=3 Hz), 3.39 s(2H, C²), 3.48 dd(H, C⁶, J_{6,5}=3 Hz, J_{6,7}=7 Hz), 3.78 s(OCH₃), 6.01 dd(H, C⁷, J_{7,6}=7 Hz, J_{7,8}=15 Hz), 6.19 dd(H, C¹⁰, J_{10,9}=15 Hz, J_{10,11}= 7.5 Hz), 6.69 dd(H, C⁹, J_{9,8}=11 Hz, J_{9,10}= 15 Hz), 7.14 dd(H, C⁸, J_{8,9}=11 Hz, J_{8,7}=15 Hz), 9.67 d(CHO, J=7.5 Hz).

Condensation of 1 with phosphorane 6 in THF-HMPTA with the use of $n-C_4H_9Li$ (-78°C, 40 min) resulted in an almost quantitative yield of (±)-3-thialeukotriene $A_4 \ 7$. The product was purified by HPLC³ from the admixture of 11E-isomer. UV λ_{max}^{EtOH} : 274, 280, 292 nm(& 29700, 34300, 25300); ¹H NMR (CDCl₃) p.p.m.: 0.89 t(3H, C², J=6 Hz), 1.64 m(6H, C¹⁷, C¹⁸, C¹⁹), 2.30 m(2H, C¹⁶), 2.85 d(2H, C⁴, J=6 Hz), 3.12 m(2H, C¹³), 3.20 td(H, C⁵, J_{5,4}=6 Hz, J_{5,6}=2.5 Hz), 3.33 s(2H, C²), 3.41 dd(H, C⁶, J_{6,5}=2.5 Hz, J_{6,7}=7.5 Hz), 3.74 s(OCH₃), 5.16-6.74 m(8H, C⁷⁻¹², C^{14,15}).

¹³C NMR JEOL-FX-90Q (22.50 MHz), $(CDCI_3)$: 14.10 q(C^{20}), 22.58 t(C^{19}), 26.31 t(C^{13}), 27.29 t(C^{16}), 29.31 t(C^{17}), 31.53 t(C^{18}), 33.36 t, 33.75 t(C^2 , C^4), 52.55 q(C^{21}), 58.36 d, 59.85 d(C^5 , C^6), 126.83 d, 128.21 d, 128.79 d, 131.14 d, 131.99 d, 132.12 d, 135.38 d(C^7-C^{12} , C^{14} , C^{15}), 170.64 s(C^1).

The treatment of <u>7</u> with benzyl mercaptan gives rise to methyl ester of (\pm) -3-thia-5-oxy-6-thiobenzyl-7E, 9E, 11E, 14Z-eicosatetraene acid <u>8</u>⁴ in a 90% yield as a mixture of diastereoisomers (1:1). UV $\lambda_{max}^{\text{EtOH}}$: 272, 284, 295 nm (§ 36600, 44300, 38100). ¹H NMR (CDCl₃) p.p.m.: 0.92 t (3H, C²⁰, J=6 Hz), 1.37 m(C^{17,18,19}), 2.15 m(2H, C¹⁶), 2.67-3.15 m(2H, C^{5,6}, 2H, C¹³), 3.30 s (2H, C²), 3.59 d(2H, C⁴, J=6 Hz), 3.79 s(OCH₃), 5.20-6.58 m(8H, C^{7,8,9,10,11,12,14,15}), 7.30 s (5H, Ar).

REFERENCES

- 1. 1-Chloro-4-acetoxy-2E-butene was obtained by acetolysis of 1,4-dichlorobutene (AcONa, AcOH, 120°C, 5 h) in a 45% yield.
- 2. J.Ernest, A.J.Main, R.Menasse. Tetrahedron Letters, 167-170 (1982).
- 3. HPLC on a Du-Pont 8800. Zorbax-Sil column (25 x 0.45 cm); hexane ethyl acetate in a 8:2 ratio was employed as an eluent (retention vol.: 7.7 min).
- 4. Satisfactory results of the elemental analysis and of mass number were obtained for new compounds 2, 3, 4, 5, 7, and 8.

(Received in UK 17 June 1985)